Section 3.1: Linear systems
We learn:

- what is a system of linear equations?
- How to solve one by 'elimination'
- What are elementary operations
- How to find if the system is consistent or inconsistent
- There are 0,1 , or infinitely many solutions

Page 145 question 4.
Solve $5 x-6 y=1$
$6 x-5 y=10$
solution. We eliminate the ron able x

$$
\frac{6}{5}(e q n 1): \quad 6 x-\frac{36}{5} y=\frac{6}{5}
$$

Subtract this from eqn 2

$$
0 x+\left(-5+\frac{36}{5}\right) y=10-\frac{6}{5}
$$

$$
\frac{11}{5} y=\frac{44}{5}, \quad y=4
$$

We use 'back substitution' to find x. Substitute the value for y in $5 x-6 y=1$

$$
x=\frac{1+6 y}{5}=5
$$

There is a unique solution: $(x, y)=(5,4)$. We used 'back substitution' and some 'elementary operations'.

Page 145 question 6.
Solve

$$
\begin{aligned}
& 4 x-2 y=4 \\
& 6 x-3 y=7
\end{aligned}
$$

The solutions are $(x, y)=$
a. $(3,2)$
b. $(2,3)$
c. $(-1,5)$
d. $(1 / 2,-1 / 3)$
e. None of the above. No sohutris.

Add $\left(-\frac{3}{2}\right)$ eqn 1 to eon 2:

$$
D=1
$$

Solve $\quad 4 x-2 y=4$

$$
6 x-3 y=6
$$

Simitar: $0=0$, which is OK.

The general solution is: $(x, 2 x-2)$ There are infinitely many solutions.

Summary
Solve

$$
\begin{aligned}
& 4 x-2 y=4 \\
& 6 x-3 y=6
\end{aligned}
$$

Solve $\quad 4 x-2 y=4$

$$
6 x-3 y=7
$$

Page 145 question 4.
Solve $\quad 5 x-6 y=1$
$6 x-5 y=10$

infinitely many
solutions
no solutions, inconsistent
one solution

Elementary operations

1. Multiply an equation by a non-zero scalar.
2. Switch two equations.
3. Add a multiple of one equation to another.

$$
\begin{aligned}
& \text { Solve } \\
& \begin{aligned}
2 y+3 z & =7 \\
2 x+4 y+z & =-1 \\
x+3 y+2 z & =3
\end{aligned}
\end{aligned}
$$

Page 145 question 26.
The equation $y^{\prime \prime}-121 y=0$ has general solution $y=A e^{\wedge 11 x}+B e^{\wedge-11 x}$.
If $y(0)=44$ and $y^{\prime}(0)=22$, find A and B.

